Pandas 數據結構 - Series
Pandas Series 類似表格中的一個列(column),類似於一維數組,可以保存任何數據類型。
Series 由索引(index)和列組成,函數如下:
pandas.Series( data, index, dtype, name, copy)
參數說明:
-
data:一組數據(ndarray 類型)。
-
index:數據索引標簽,如果不指定,默認從 0 開始。
-
dtype:數據類型,默認會自己判斷。
-
name:設置名稱。
-
copy:拷貝數據,默認為 False。
創建一個簡單的 Series 實例:
實例
import pandas as pd
a = [1, 2, 3]
myvar = pd.Series(a)
print(myvar)
a = [1, 2, 3]
myvar = pd.Series(a)
print(myvar)
輸出結果如下:
從上圖可知,如果沒有指定索引,索引值就從 0 開始,我們可以根據索引值讀取數據:
實例
import pandas as pd
a = [1, 2, 3]
myvar = pd.Series(a)
print(myvar[1])
a = [1, 2, 3]
myvar = pd.Series(a)
print(myvar[1])
輸出結果如下:
2
我們可以指定索引值,如下實例:
實例
import pandas as pd
a = ["Google", "Runoob", "Wiki"]
myvar = pd.Series(a, index = ["x", "y", "z"])
print(myvar)
a = ["Google", "Runoob", "Wiki"]
myvar = pd.Series(a, index = ["x", "y", "z"])
print(myvar)
輸出結果如下:
根據索引值讀取數據:
實例
import pandas as pd
a = ["Google", "Runoob", "Wiki"]
myvar = pd.Series(a, index = ["x", "y", "z"])
print(myvar["y"])
a = ["Google", "Runoob", "Wiki"]
myvar = pd.Series(a, index = ["x", "y", "z"])
print(myvar["y"])
輸出結果如下:
Runoob
我們也可以使用 key/value 對象,類似字典來創建 Series:
實例
import pandas as pd
sites = {1: "Google", 2: "Runoob", 3: "Wiki"}
myvar = pd.Series(sites)
print(myvar)
sites = {1: "Google", 2: "Runoob", 3: "Wiki"}
myvar = pd.Series(sites)
print(myvar)
輸出結果如下:
從上圖可知,字典的 key 變成了索引值。
如果我們隻需要字典中的一部分數據,隻需要指定需要數據的索引即可,如下實例:
實例
import pandas as pd
sites = {1: "Google", 2: "Runoob", 3: "Wiki"}
myvar = pd.Series(sites, index = [1, 2])
print(myvar)
sites = {1: "Google", 2: "Runoob", 3: "Wiki"}
myvar = pd.Series(sites, index = [1, 2])
print(myvar)
輸出結果如下:
設置 Series 名稱參數:
實例
import pandas as pd
sites = {1: "Google", 2: "Runoob", 3: "Wiki"}
myvar = pd.Series(sites, index = [1, 2], name="RUNOOB-Series-TEST" )
print(myvar)
sites = {1: "Google", 2: "Runoob", 3: "Wiki"}
myvar = pd.Series(sites, index = [1, 2], name="RUNOOB-Series-TEST" )
print(myvar)
點我分享筆記